
Aracele Torres is a Historian and Doctor
in Social History. She works in the area
of History of Science and Technology,
developing research on the history of
digital technology, free software, the
Internet, cyber-libertarianism,
ideology, and utopia.

Torres, A. L., 2019. Free software and the communitarian and solidary logic of knowledge construction. V!rus,
Sao Carlos, 18. Translated from Portuguese by Juliano Veraldo da Costa Pita. [e-journal] [online] Available
at: .

Abstract

This article briefly discusses how the notion of sharing and collective creation
present in the free software production model is linked to an idea of law and
social responsibility. We demonstrate how, through the creation of the GNU
Project, which initiated the free software movement, Richard Stallman sought to
oppose the anti-community and anti-solidarity logic imposed by the software
industry from the end of the last century. This logic, when transforming the
software into private goods of restricted use and circulation by the copyrights
privileged individual action, creation and gain to the detriment to the collective’s.
Contrary to this trend, the free software movement presents itself as a defense
not only of free knowledge as an important value in society, but also of its
production in a collaborative way as essential for the free software and society as
a whole to thrive.

Keyword Free Software, Collective Work, Collaboration, Social Responsibility

GUEST AUTHOR ARTICLE

1 Introduction

The open and collaborative production model of the GNU Project (GNU's Not Unix!)1, which started the free
software movement is a milestone in the history of modern computing and also represents a crack in the
neoliberal individualistic production logic. This model proposes that computer programs keep their source

code2 open to anyone who wishes to execute them for any purpose; to distribute copies of these programs to
anyone; to study them to understand their functioning and to be able to change them; and to redistribute
copies of modified versions of those programs. These are the famous four basic freedoms of free software,
which are related to their use permissions and not to their price. Free software is not necessarily without cost

or non-commercial3. These freedoms not only allow as also legally enforce, through the use of the GPL

(General Public License)4license, that the software is to be treated as a collective creation, which is in
constant process of improvement and that allows the participation and collaboration of everyone.

issn 2175-974x | ano 2019 year

semestre 01 semester

editorial
editorial

entrevista
interview

artigos submetidos
submitted papers

tapete
carpet

artigo nomads
nomads paper

projeto
project

expediente
credits

próxima v!rus
next v!rus

http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote1sym
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote2sym
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote3sym
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote4sym

The GPL license, also known as copyleft5, obliges those who wish to redistribute the modifications made in
free software to also use the same free license adopted by the original author of the software. This ensures
that no one can take a open source free software, make changes to it, and redistribute the program with that
code closed. This is a feature of the GPL that one of the executives of Microsoft once called, in a pejorative
tone, "viral", but that is actually the secret of the success of the free software projects. The GPL uses the
copyright mechanism itself - which it strongly opposes - to circumvent it and to reverse its logic, making it
rather than restricting to copying and redistribution, as to act as a constraint on that restriction (Torres,
2018, p.151). If I write software and license it under the GPL, which is basically a copyright, I am telling the
world that I would like everyone to have access to my software code, and that if someone decides to change
it and redistribute it, this person would also be required to do the same.

The fact that the program code is open and allow for constant modifications and improvements makes free
software a collective construction. One of the main consequences of this was the development of
communities around specific free software projects, such as the KDE, Debian, Firefox and VLC communities.
The dynamics of the contributions in these communities vary according to different factors, for example, the
governance guidelines of each one, their size, the political-philosophical orientations of their members. It is
very common for the people involved in them, the so-called collaborators or contributors, to volunteer and
devote their time to contribute to these projects without demanding any financial contribution. But it is also
common for companies or non-profit institutions, such as the Mozilla Foundation, responsible for the Firefox
browser, to pay people to work on the maintenance of the project. And while that happens, there are still
thousands of contributors around the world who volunteer in the development and maintenance of Firefox.

This model of production and distribution of free software, however, is the opposite of that practiced by the
industry today, which has adopted, at least since the 1980s, the proprietary or closed source software model.
In this model, the company or individual creates the software and uses legal mechanisms of intellectual
property, usually copyright, to make its source code closed - that is, inaccessible to any user who wishes to
understand how that program was constructed and how it functions. In this case, only the copyright holder
has the legal right to access and change this code, as well as to distribute copies of such programs. If the
user attempts to do any of these things, without permission, he is framed as a violator of an intellectual
property system, a practice that is criminalized and pejoratively called "piracy" by the industry.

What prevailed as the industry standard was therefore an approach as the software as a private work or
good, essentially with a commercial purpose, a product that needs to have its circulation and use controlled,
as this directly impacts on the profit that its owners can have with it. In opposition to this is the view of the
free software, in that a computer program should be seen as knowledge, and, therefore, a work of collective
use and construction, a “commons”, which must have, first of all, social purposes. This does not mean,
however, that it can not be marketed, but that it has a social function that must benefit everyone, not just an

economic elite. Although it has become a heterogeneous6 movement over time, it was born as a social
movement in defense of free knowledge in society.

2 The emergence of proprietary software

The modern concept of “commons” was introduced in the academic literature in 1968 by ecologist Garrett
Hardin in his famous article "The Tragedy of Commons," which dealt with the management of a finite
resource commonly used by individuals acting in accordance with their own interests. In the sense it uses,
"commons" refers to shared natural resources, such as rivers and lands, which in their opinion always tend to
be exhausted for lack of rational use by individuals. The original use of this term refers to the context of
medieval Britain and was used by British law to describe land commonly used for peasants and nobles. In the
1990s, the concept was appropriated by economics, especially after Elinor Ostrom's publication of Governing
the Commons: The Evolution of Institutions for Collective Action, which opposed Hardin's thesis that the
“commons” always tended to failure. Currently, the concept has been widely used to refer to digital cultural
resources (intangible or intangible goods) that are produced and used collectively, such as Wikipedia or free

software.7

Public goods, defined by neoclassical economic theory, are non-disputable goods, also called non-rival goods.
Non-rivals, because their use by someone does not prevent the use by others. A public good also has the
characteristic of non-exclusivity, that is, it is not possible to prevent someone from consuming it. In other
words, they can be obtained without the need for a direct payment for their use. In opposition to this, rival
and exclusive goods are considered private goods. However, non-exclusivity is not an inherent attribute of
public goods, it is an attribute of a political character, related to the institutions that regulate its use. In
general, there are almost no assets that can not be privatized through legal and political decisions. In fact,
this process of privatizing knowledge, for example, is part of the value-extraction logic of contemporary
capitalism (Prado, 2005).

http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote5sym
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote6sym
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote7sym

The adoption of proprietary software as the industry standard was therefore a legal and political decision, a
measure taken in a specific context of capitalism restructuration and the advance of neoliberalism in the
1980s. This restructuring led to a process of commoditization of intangible goods, such as science and
technology, which have been artificially transformed into rival and exclusive goods. The way out of the
capitalist structural crisis of the end of the last century, which culminated in a fall in profit and productivity,
was the creation of new forms of capital accumulation. Technology and science were used both to increase
the efficiency of the productive process (and thus profit), and as a product of this process itself (Dumeen and
Levin, 2003). Capitalism revitalized itself by ensuring that these common goods were transformed into
private property (Harvey, 2003). Similar to what was described by Karl Marx (2013) in the process of
primitive capital accumulation, which occurred in Britain in the fifteenth century where lands of common use
were transformed into private property of the nobility, a movement of closure of common goods occurred at
the end of last century.

This phenomenon, called by David Harvey (2003) of "accumulation by dispossession," deals with the
transformation of cultural, historical, and intellectual goods into commodities. Through this process,
companies produce and sell these goods mainly in a model of rent, where the buyer pays for the right to use
that product, but does not become exactly its owner, that is, it can not do what it wishes with it. Companies,
therefore, exercise a monopoly on these goods, as is the case of closed source software. And this monopoly
is secured by intellectual property laws, created with the justification of "protecting" the author's rights and
"encouraging" the creation and dissemination of works, but which in fact have the function of creating an
"artificial shortage" of such assets.

When Richard Stallman, the American programmer who started the free software movement, announced in
1983 his idea of creating a completely free operating system, GNU, built openly and collaboratively, it did not
necessarily was starting a new trend. This was because it was common until the 1970s to share the software
code in the universities and business environments. However, he was initiating a dispute that would secure

an important place in the computer industry for this production model8, as it fostered the development of an
entire copyleft culture that goes beyond computation and is nowadays adopted by other areas such as music,
the arts, science, etc. (Kelty, 2008). In his famous e-mail announcing the GNU Project, he uses as a
fundamental argument for his undertaking: the notion that doing so was a moral duty to the community of
programmers of which he was a part and to society itself as a whole. He was making a commitment not to let
this collaborative culture, "as old as computers," as he himself (Stallman, 2002, p.17) said, die and be
replaced by the proprietary, closed pattern we have in the industry today.

Until the 1970s, program code sharing was common practice in both corporate and university settings.
Computing at that time was still very hardware-centric and the software industry was still in its infancy.
There was no consensus among companies that one could profit from the software as much as possible with
the hardware. From the 1970s to the 1980s the scenario, however, changes, with, among other things, the
creation of personal computers; the creation of the first courses in Computer Science and the consequent
supply of skilled labor; the development of programming languages; the advance of a neoliberal discourse
defending market expansion. So companies start to see in the software a possibility of profit and rethink the
approach around it, starting to adopt copyright to restrict its circulation and use and thus be able to profit
from its sales. Before that, they usually provided the software along with the hardware, at no additional cost,
and did not see much of a problem in allowing users to change the codes of those programs and share them
(Torres, 2018).

It was this scenario of closure of the software that the free software project created by Richard Stallman
opposed. Stallman wished to keep the software not only as a commodity of common use, but also of
collective production. The logic was to establish a kind of ecosystem of collaboration, where the idea of only
taking advantage of the work of another person (s) was substituted by the idea of to work with thi(e)s(e)
author(s). An ecosystem where it is possible to be part of the creation of this work that is the software and to
have a social responsibility in its maintenance as an open and collective work, belonging to all. This is a
notion that goes against what neoliberalism prescribes, which preaches an anti-communitarianism in that it
encourages the individual to work in isolation from the community, and defends the discourse that the
individual is a self-made man, that wins alone in society and not necessarily in communion and cooperation
with others, but in competition with them.

In the context of free software, the author has a social responsibility to the community in which he is
inserted, sharing knowledge is a "golden rule", as Stallman put it when announcing his project (2002, p.31).
In the neoliberal model, the responsibility of the author is for himself, not necessarily due to the community
in which he is inserted, since what prevails is the idea of meritocracy. If he acquired some knowledge, a
know-how, it was through his individual effort and he has every right to monopolize access to that knowledge
and take advantage of it, since in neoliberal discourse private property is the natural right of the individual.
There is no prospect of "social solidarity" or a "spirit of community", terms much used by Stallman in of your
project.

http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote8sym

3 Sharing as a right and a social responsibility

Richard Stallman argues that we have the right to make use of digital technologies in socially useful ways,
taking advantage of the benefits offered by the ease of copying digital files. Digital information sharing is
very different from sharing material things. While immaterial goods, such as a digital book or program code,
are non-rival goods, material goods are the opposite. If someone has a printed book and wants to lend it to a
friend, only one of them can have this book at that time. On the other hand, if this book is digital both can
have it and read it at the same time. Since software is a knowledge, Stallman believes that this should be
available for use by everyone. If someone owns a computer program and wants to share it, who should have
the right to decide whether or not this sharing can be done: the individuals involved or the copyright holders
of the program? For Stallman, in today's society this response is based on the economic criterion of profit
maximization of software owner, usually a company. When, in fact, it should be based on another criterion:
the prosperity that is achieved through the sharing of knowledge. In his opinion, when you are prevented
from sharing knowledge, the whole society is impaired.

Although digital technologies facilitate the reproduction of information, copyright or any other form of
restriction imposed by the intellectual property system, however, it moves in the opposite direction, blocking
that facility. Copyright works from the idea that there is an owner, who has a monopoly over the copying and
distribution of a work and is the one who legally decides the use that can be made of it. The interests of this
owner do not always coincide with the interests of society in general. The act of restricting access to a work
by means of copyright reflects the intention to produce an artificial shortage of this work. There is a conflict
of interests, a tension between a social right, the free access to knowledge that Stallman believes we have,
and the privilege of a monopolist to restrict that access for profit.

The distinction between the copyright holder and the author of the code is very important here because it
clarifies the working and power relationship within this proprietary code production structure. The author of a
software code, in general, is the worker (in this case, the person who programs) who writes it, and not the
company or entrepreneur who sells it and profits from it. There is in the process of producing proprietary
software the appropriation of a work from others. The programmer has the knowledge to produce software,
but not the rights to use or reproduce that software, which is alienated from the employer who hired them.
In the case of the production of free software, this logic can be broken, since the author of a free code still
holds the rights to use and distribute that software that he wrote. Its work continue to be his, but he
expands these rights to all of society, making software a common good that everyone can also enjoy.

Richard Stallman believes that the interests of society as a whole must be above private interests and that
much importance is given to the author in contemporary society. According to his view, this importance
results in a loss in the development of collective and collaborative production of knowledge, and the rights of
the author are placed above the rights of the whole society. To emphasize that this importance is a product of
our time and the economic system in which we live, he reinforces the idea that the most important factor in a
society is the social production of knowledge, translated from the idea that a work must serve primarily social
purposes, rather than the individual purposes of the one who created it.

Stallman explains that alongside the argument that the author has a natural right over his work - a right that
would go beyond the social right of everyone to access to knowledge - the software industry also uses an
economic argument to justify its monopoly on the source code. This argument can be summed up from the
idea that if we do not produce proprietary software, the software will be terminated, because the developers
would not work without the assurance that they would be rewarded. The mistake of this discourse, he says,
is to assume that there are no alternative systems to proprietary software. In addition, it is also a great
misconception to relate the existence of software, or any knowledge produced by society, to the idea of
ownership. Software and private property are not synonymous, as he points out, "it is a consequence of the
choice of socio-legal policy that we are questioning: the decision to have owners" (2002, p.122).

The crucial point to Richard Stallman and the proponents of the GNU Project is that society needs full access
to knowledge, which is a right of all citizens. This defense is based on the "collectivist" view of the knowledge
that project advocates have. Knowledge is seen as a common property and anything that arises in society, as
new software, for example, derives from a common tradition. In this sense, the free software movement is
today an important battlefield to guarantee the right of every citizen to free access and free sharing of
information. For this movement, the adoption of an open system and the shared software model would
therefore reflect a right and a social responsibility that is above individual capitalist interests.

4 Conclusion

By proposing a society in which all software is free, the GNU Project forces a reorientation of power and
knowledge within the current social configuration, where knowledge in the form of science and technology is

one of the main sources of profit. This reorientation occurs by the breakdown of the monopoly of individuals
or companies on a common good, in this case the technological knowledge. Both the access to this
knowledge made free and its reproduction can not be controlled by mechanisms of privatization of the
industry. Free software breaks with this logic of monopolization and also dilutes the power exercised over
knowledge among all citizens, ensuring that software is really a public good.

The free sharing and collective and cooperative work that he consequently encourages with his production
model are social responsibilities in the logic of movement. This logic rests on the idea of maintaining a logic
of communal dynamic and solidarity that is opposed to the individualist and competitive neoliberal capitalist
logic. In this sense, free software represents a shake in the fabric of capitalist discourse and shows that there
are alternatives of production, contrary to what the industry discourse wants us to believe. The movement is
an attempt to rescue a logic of collaboration so that society thrives with the help of all, a call for all to take
responsibility for this prosperity, playing roles of solidarity rather than roles of domination and exploitation.

References

Duménil, G. and Lévy, D., 2003. Superação da crise, ameaças de crises e novo capitalismo. In: F. Chesnais,
G. Duménil, D. Lévy and I. Wallerstein, 2003. Uma nova fase do capitalismo? São Paulo: Xamã. pp.15-41.

Hardin, G., 1968. The Tragedy of the Commons. Science, 162(13), pp.1243-1248.

Harvey, D., 2003. The new imperialism. New York: Oxford University Press.

Kelty, C. M., 2008. Two bits: the cultural significance of free software. Durham: Duke University Press.

Marx, K., 2013. O capital: Crítica da economia política. Livro I: O processo de produção do capital. São Paulo:
Boitempo.

Ostrom, E., 1990. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge:
Cambridge University Press.

Prado, E. F. S., 2005. Desmedida do valor: Crítica da pós-grande indústria. São Paulo: Xamã.

Stallman, R. M., 2002. Free Software, Free Society: Selected Essays of Richard M. Stallman. Boston: GNU
Press.

Torres, A. L., 2018. A tecnoutopia do software livre: uma história do projeto técnico e político do GNU. São
Paulo: Alameda.

Williams, S., 2002. Free as in Freedom: Richard Stallman's Crusade for Free Software. California: O'Reilly
Media.

1 “GNU’s Not Unix!” works as an recursive acronym to represents the idea that the GNU was based in the
UNIX operation system, but differs from it, fundamentally, for having an open source-code.

2 Source code is a set of instructions, in a specifically programming language, that composes a computer
program. If its code is closed/proprietary, the user cannot access these instructions and is not capable of
discovering how a program was built, how it works and, consequently, how can it can be improved, for
exemplo.

3 It's important to enforce that “free” in this context does not means free of charge or non-commercial. This
confusion arises from the use of the english word “free”, that can mean both. The free software movement
does not opposes itself for the commercialization of the software, but to its transformation in a restricted
access good through intellectual property mechanisms, such as the copyright.

4 The GPL is a free software licence created in 1989 and maintained until today by the Free Software
Foundation, which is also responsible for the maintenance of the GNU Project, the free operation system that
started the movement in defense of the open source software.

5 The “copyleft” therm has been used as a pun with copyright, meaning either as “left to copy” as “copy to
the left”. It appears to have been created in 1984 or 1985, in a letter written by a friend of Richard Stallman,
in which he had written the phrase: “Copyleft - all rights reversed”, in a clear allusion to the phrase that
accompanies the copyright notifications: “all rights reserved” (Williams, 2002).

http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote1anc
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote2anc
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote1anc
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote4anc
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote5anc

6 There are two main currents within the movement that defends free software, one is called "free software",
which is the current that defends the social and political character of the movement; and the other is "open
source", which is more concerned with technical and marketing issues of open source. The first one is based
on the founder of the movement, Richard Stallman, and the second is Linus Torvalds, creator of Linux, an
important component of GNU / Linux operating systems.

7 To delve into this discussion about free software as a "commons" see: Said Vieira, M. What Kind of a
Commons Is Free Software? CEUR Workshop Proceedings. Proceedings of the 6th Open Knowledge
Conference. Berlin, 2011. Available at: https://ssrn.com/abstract=2619956 [Accessed 20 May 2019].

8 The importance that this model of production has acquired within the industry itself, which sought to
abolish it and adopt in its place the closed standard, is indisputable. This can be attested by the massive
investment of capital and labor that traditional companies have made in free software projects, as is the case
with IBM, which alone will invest $ 1 billion in these projects this year. Source: IBM To Invest $ 1 Billion In
Linux! Available at: https://ssrn.com/abstract=2619956 [Accessed 28 February 2019].

http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote6anc
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote7anc
https://ssrn.com/abstract=2619956
http://www.nomads.usp.br/virus/virus18/?sec=5&item=100&lang=pt#sdfootnote8anc
https://itsfoss.com/ibm-invest-1-billion-linux/

